We provide 3d animation courses
Databricks Databricks-Machine-Learning-Associate최신업데이트인증덤프, Databricks-Machine-Learning-Associate최신업데이트시험공부자료
참고: DumpTOP에서 Google Drive로 공유하는 무료, 최신 Databricks-Machine-Learning-Associate 시험 문제집이 있습니다: https://drive.google.com/open?id=1ozNeVM8YQto8rjKfDBwNee1I5ptK-ExB
DumpTOP는 아주 믿을만하고 서비스 또한 만족스러운 사이트입니다. 만약 Databricks-Machine-Learning-Associate시험실패 시 우리는 100% 덤프비용 전액환불 해드립니다.그리고 시험을 패스하여도 우리는 일 년 동안 무료업뎃을 제공합니다.
Databricks인증 Databricks-Machine-Learning-Associate시험패스는 고객님의 IT업계종사자로서의 전환점이 될수 있습니다.자격증을 취득하여 승진 혹은 연봉협상 방면에서 자신만의 위치를 지키고 더욱 멋진 IT인사로 거듭날수 있도록 고고싱할수 있습니다. DumpTOP의 Databricks인증 Databricks-Machine-Learning-Associate덤프는 시장에서 가장 최신버전으로서 시험패스를 보장해드립니다.
>> Databricks Databricks-Machine-Learning-Associate최신 업데이트 인증덤프 <<
Databricks Databricks-Machine-Learning-Associate최신 업데이트 시험공부자료 - Databricks-Machine-Learning-Associate최신 업데이트 시험대비자료
Databricks Databricks-Machine-Learning-Associate덤프의 무료샘플을 원하신다면 우의 PDF Version Demo 버튼을 클릭하고 메일주소를 입력하시면 바로 다운받아Databricks Databricks-Machine-Learning-Associate덤프의 일부분 문제를 체험해 보실수 있습니다. Databricks Databricks-Machine-Learning-Associate 덤프는 모든 시험문제유형을 포함하고 있어 적중율이 아주 높습니다. Databricks Databricks-Machine-Learning-Associate덤프로Databricks Databricks-Machine-Learning-Associate시험패스 GO GO GO !
최신 ML Data Scientist Databricks-Machine-Learning-Associate 무료샘플문제 (Q24-Q29):
질문 # 24
Which of the Spark operations can be used to randomly split a Spark DataFrame into a training DataFrame and a test DataFrame for downstream use?
정답:A
설명:
The correct method to randomly split a Spark DataFrame into training and test sets is by using the randomSplit method. This method allows you to specify the proportions for the split as a list of weights and returns multiple DataFrames according to those weights. This is directly intended for splitting DataFrames randomly and is the appropriate choice for preparing data for training and testing in machine learning workflows.
Reference:
Apache Spark DataFrame API documentation (DataFrame Operations: randomSplit).
질문 # 25
A machine learning engineer is converting a decision tree from sklearn to Spark ML. They notice that they are receiving different results despite all of their data and manually specified hyperparameter values being identical.
Which of the following describes a reason that the single-node sklearn decision tree and the Spark ML decision tree can differ?
정답:D
설명:
One reason that results can differ between sklearn and Spark ML decision trees, despite identical data and hyperparameters, is that Spark ML decision trees test binned feature values as representative split candidates. Spark ML uses a method called "quantile binning" to reduce the number of potential split points by grouping continuous features into bins. This binning process can lead to different splits compared to sklearn, which tests all possible split points directly. This difference in the splitting algorithm can cause variations in the resulting trees.
Reference:
Spark MLlib Documentation (Decision Trees and Quantile Binning).
질문 # 26
A data scientist has created two linear regression models. The first model uses price as a label variable and the second model uses log(price) as a label variable. When evaluating the RMSE of each model by comparing the label predictions to the actual price values, the data scientist notices that the RMSE for the second model is much larger than the RMSE of the first model.
Which of the following possible explanations for this difference is invalid?
정답:C
설명:
The Root Mean Squared Error (RMSE) is a standard and widely used metric for evaluating the accuracy of regression models. The statement that it is invalid is incorrect. Here's a breakdown of why the other statements are or are not valid:
Transformations and RMSE Calculation: If the model predictions were transformed (e.g., using log), they should be converted back to their original scale before calculating RMSE to ensure accuracy in the evaluation. Missteps in this conversion process can lead to misleading RMSE values.
Accuracy of Models: Without additional information, we can't definitively say which model is more accurate without considering their RMSE values properly scaled back to the original price scale.
Appropriateness of RMSE: RMSE is entirely valid for regression problems as it provides a measure of how accurately a model predicts the outcome, expressed in the same units as the dependent variable.
Reference
"Applied Predictive Modeling" by Max Kuhn and Kjell Johnson (Springer, 2013), particularly the chapters discussing model evaluation metrics.
질문 # 27
A new data scientist has started working on an existing machine learning project. The project is a scheduled Job that retrains every day. The project currently exists in a Repo in Databricks. The data scientist has been tasked with improving the feature engineering of the pipeline's preprocessing stage. The data scientist wants to make necessary updates to the code that can be easily adopted into the project without changing what is being run each day.
Which approach should the data scientist take to complete this task?
정답:B
설명:
The best approach for the data scientist to take in this scenario is to create a new branch in Databricks, commit their changes, and push those changes to the Git provider. This approach allows the data scientist to make updates and improvements to the feature engineering part of the preprocessing pipeline without affecting the main codebase that runs daily. By creating a new branch, they can work on their changes in isolation. Once the changes are ready and tested, they can be merged back into the main branch through a pull request, ensuring a smooth integration process and allowing for code review and collaboration with other team members.
Reference:
Databricks documentation on Git integration: Databricks Repos
질문 # 28
A data scientist has developed a linear regression model using Spark ML and computed the predictions in a Spark DataFrame preds_df with the following schema:
prediction DOUBLE
actual DOUBLE
Which of the following code blocks can be used to compute the root mean-squared-error of the model according to the data in preds_df and assign it to the rmse variable?
정답:A
설명:
To compute the root mean-squared-error (RMSE) of a linear regression model using Spark ML, the RegressionEvaluator class is used. The RegressionEvaluator is specifically designed for regression tasks and can calculate various metrics, including RMSE, based on the columns containing predictions and actual values.
The correct code block to compute RMSE from the preds_df DataFrame is:
regression_evaluator = RegressionEvaluator( predictionCol="prediction", labelCol="actual", metricName="rmse" ) rmse = regression_evaluator.evaluate(preds_df) This code creates an instance of RegressionEvaluator, specifying the prediction and label columns, as well as the metric to be computed ("rmse"). It then evaluates the predictions in preds_df and assigns the resulting RMSE value to the rmse variable.
Options A and B incorrectly use BinaryClassificationEvaluator, which is not suitable for regression tasks. Option D also incorrectly uses BinaryClassificationEvaluator.
Reference:
PySpark ML Documentation
질문 # 29
......
지금21세기 IT업계가 주목 받고 있는 시대에 그 경쟁 또한 상상할만하죠, 당연히 it업계 중Databricks Databricks-Machine-Learning-Associate인증시험도 아주 인기가 많은 시험입니다. 응시자는 매일매일 많아지고 있으며, 패스하는 분들은 관련it업계에서 많은 지식과 내공을 지닌 분들뿐입니다.
Databricks-Machine-Learning-Associate최신 업데이트 시험공부자료: https://www.dumptop.com/Databricks/Databricks-Machine-Learning-Associate-dump.html
Databricks Databricks-Machine-Learning-Associate덤프로 시험보시면 시험패스는 더는 어려운 일이 아닙니다, 하지만 문제는 어떻게Databricks Databricks-Machine-Learning-Associate시험을 간단하게 많은 공을 들이지 않고 시험을 패스할것인가이다, IT업계에서 더욱 큰 발전을 원하신다면 Databricks-Machine-Learning-Associate자격증을 취득하는건 필수조건으로 되었습니다, 이건 모두 DumpTOP Databricks-Machine-Learning-Associate최신 업데이트 시험공부자료 인증시험덤프로 공부하였기 때문입니다, DumpTOP의 Databricks인증 Databricks-Machine-Learning-Associate덤프는Databricks인증 Databricks-Machine-Learning-Associate시험에 대비한 공부자료로서 시험적중율 100%입니다, DumpTOP에서는 최신의Databricks Databricks-Machine-Learning-Associate자료를 제공하며 여러분의Databricks Databricks-Machine-Learning-Associate인증시험에 많은 도움이 될 것입니다.
은홍은 저를 빤히 쳐다보는 강일을 피해 눈을 홱 돌렸다, 백아린에 대한 정보가 조금이라도 더 제대로 파악돼 있었다면 최소한 화접의 일부만 끌고 상대하러 가지는 않았을 테니까요, Databricks Databricks-Machine-Learning-Associate덤프로 시험보시면 시험패스는 더는 어려운 일이 아닙니다.
Databricks Databricks-Machine-Learning-Associate 시험문제
하지만 문제는 어떻게Databricks Databricks-Machine-Learning-Associate시험을 간단하게 많은 공을 들이지 않고 시험을 패스할것인가이다, IT업계에서 더욱 큰 발전을 원하신다면 Databricks-Machine-Learning-Associate자격증을 취득하는건 필수조건으로 되었습니다, 이건 모두 DumpTOP 인증시험덤프로 공부하였기 때문입니다.
DumpTOP의 Databricks인증 Databricks-Machine-Learning-Associate덤프는Databricks인증 Databricks-Machine-Learning-Associate시험에 대비한 공부자료로서 시험적중율 100%입니다.
2025 DumpTOP 최신 Databricks-Machine-Learning-Associate PDF 버전 시험 문제집과 Databricks-Machine-Learning-Associate 시험 문제 및 답변 무료 공유: https://drive.google.com/open?id=1ozNeVM8YQto8rjKfDBwNee1I5ptK-ExB